Design of Upfc Based Damping Controller for Robust Stabilization of Power System Low Frequency Oscillations Using Lmi Technique

نویسندگان

  • K.D.V. Narasimha Rao
  • Subrata Paul
  • T. K. Gangopadhyay
چکیده

This paper presents the design of Unified Power Flow Controller (UPFC) based damping controller for damping of power system low frequency oscillations under dynamic uncertainty. Detailed investigation have been carried out by previous researchers considering the four alternatives of UPFC based damping controller namely modulating index of series inverter (mse), modulating index of shunt inverter (msh), Phase angle of series inverter (δse) and phase angle of the shunt inverter (δsh). The damping controller design is formulated as an output disturbance rejection problem based on the mixed sensitivity formulation. The problem is posed in the linear matrix inequality (LMI) framework. A Single Machine Infinite Bus (SMIB) system employing UPFC is considered to illustrate the effectiveness and robustness of the proposed controller over a wide range of operating conditions. The MATLAB simulation result shows good damping and robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Design of UPFC Output Feed Back Controller for Power System Stability Enhancement by Hybrid PSO and GSA

In this paper, the optimal design of supplementary controller parameters of a unified powerflow controller(UPFC) for damping low-frequency oscillations in a weakly connected systemis investigated. The individual design of the UPFC controller, using hybrid particle swarmoptimization and gravitational search algorithm (PSOGSA)technique under 3 loadingoperating conditions, is discussed. The effect...

متن کامل

Robust Coordinated Design of UPFC Damping Controller and PSS Using Chaotic Optimization Algorithm

A Chaotic Optimization Algorithm (COA) based approach for the robust coordinated design of the UPFC power oscillation damping controller and the conventional power system stabilizer has been investigated in this paper. Chaotic Optimization Algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool fo...

متن کامل

Low Frequency Oscillations Suppression via CPSO based Damping Controller

In this paper, the Unified Power Flow Controller (UPFC) is enhanced with a Chaotic Particle Swarm Optimization (CPSO) Damping Controller in order to mitigate the Low Frequency Oscillations (LFO) in a Single Machine Infinite Bus (SMIB) power system. The designed damping controller is an optimized lead-lag controller, which extracts the speed deviation of the generator rotor and generates the out...

متن کامل

Damping of Power System Oscillations using Unified Power Flow Controller (UPFC)

-This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based damping controllers for damping low frequency oscillations in a power system. Detailed investigations have been carried out considering four alternative UPFC based damping controllers. The investigations reveal that the damping controllers based on UPFC control parameters δE and δB provide robust...

متن کامل

A Multi-Objective HBMO-Based New FC-MCR Compensator for Damping of Power System Oscillations

In this paper, a novel compensator based on Magnetically Controlled Reactor with Fixed Capacitor banks (FC-MCR) is introduced and then power system stability in presence of this compensator is studied using an intelligent control method. The problem of robust FC-MCR-based damping controller design is formulated as a multi-objective optimization problem. The multi-objective problem is concocted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012